Efficient PbS Quantum Dot Solar Cells with Both Mg-Doped ZnO Window Layer and ZnO Nanocrystal Interface Passivation Layer

Author:

Ren Hao,Xu Ao,Pan Yiyang,Qin DonghuanORCID,Hou Lintao,Wang Dan

Abstract

In this paper, a Mg-doped ZnO (MZO) thin film is prepared by a simple solution process under ambient conditions and is used as the window layer for PbS solar cells due to a wide n-type bandgap. Moreover, a thin layer of ZnO nanocrystals (NCs) was deposited on the MZO to reduce carrier recombination at the interface for inverted PbS quantum dot solar cells with the configuration Indium Tin Oxides (ITO)/MZO/ZnO NC (w/o)/PbS/Au. The effect of film thickness and annealing temperature of MZO and ZnO NC on the performance of PbS quantum dot solar cells was investigated in detail. It was found that without the ZnO NC thin layer, the highest power conversion efficiency(PCE) of 5.52% was obtained in the case of a device with an MZO thickness of 50 nm. When a thin layer of ZnO NC was introduced between MZO and PbS quantum dot film, the PCE of the champion device was greatly improved to 7.06% due to the decreased interface recombination. The usage of the MZO buffer layer along with the ZnO NC interface passivation technique is expected to further improve the performance of quantum dot solar cells.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3