Mobility of Nitrates and Phosphates from Animal Manure-Amended Soil to Runoff and Seepage Water from a Sweet Potato Field

Author:

Antonious George Fouad1ORCID

Affiliation:

1. College of Agriculture, Community, and the Sciences, Division of Environmental Studies, Kentucky State University, Frankfort, KY 40601, USA

Abstract

Ammonia, nitrate, and phosphate in animal manure used as fertilizer reduce environmental quality by running off agricultural fields into natural water resources. Runoff and seepage water from five soil management practices (chicken manure CM, sewage sludge SS, chitin CH, biochar Bio, and no-amendment NA control plots), were investigated for their potential nutrient catching down the field slope of a sweet potato, Ipomoea balata field. The results revealed that CM-amended soil released the greatest runoff water volume (172.6 L plot −1) compared to the control treatment (98.6 L plot −1), indicating a 75% increase in the runoff water volume. CM also increased the percolated water into the rhizosphere of the growing plants by 55% compared to the control, whereas SS reduced the runoff water volume and increased the leaching water by 36% and 82%, respectively (a desirable attribute of water conservation), compared to the control plots. The concentration of PO4−3 ions in the percolated water from the biochar treatment was significantly greater compared to the other treatments, indicating there was no impact of biochar on binding PO4−3 ions. SS reduced the nitrate concentrations in the runoff and increased the seepage water volume percolated towards the roots of the growing plants; a desired attribute for preventing surface water contamination by nitrates. Observing the precipitation pattern and improving the N application rate are recommended.

Funder

United States Department of Agriculture, National Institute of Food and Agriculture

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3