Data Model for Residential and Commercial Buildings. Load Flexibility Assessment in Smart Cities

Author:

Oprea Simona-VasilicaORCID,Bâra AdelaORCID,Marales Răzvan Cristian,Florescu Margareta-Stela

Abstract

Demand response (DR) programs were usually designed to provide load peak reduction and flatten the load curve, but in the context of rapid adoption of emerging technologies, such as smart metering and sensors, load flexibility will address current trends and challenges (such as grid modernization, demand, and renewables growth) encountered by the evolving power systems. The uncertainty of the renewable energy sources (RES) and electric vehicle (EV) fleet operation has increased the importance of load flexibility that can be managed to provide more support for the stable operation of power systems, including balancing. In this paper, we propose a data model to handle load flexibility and take advantage of its benefits. We also develop a methodology to collect and organize data, combining the consumption profile with several auxiliary datasets such as climate characteristics of the location, independent system operator (ISO) to which the consumer is affiliated, geographical coordinates, assessed flexibility coefficients, tariff rates, weather forecast for day-ahead flexibility forecast, DR-enabling technology costs, and DR programs. These multiple features are stored into a flexibility relational database and NoSQL database for large consumption data collections. Then, we propose a data processing flow to obtain valuable insights from numerous .csv files and an algorithm to assess the load flexibility using large residential and commercial profile datasets from the USA, estimating plausible values of the flexibility provided by two categories of consumers.

Funder

UEFISCDI

European Regional Development Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3