Developing and Testing High-Performance SHM Sensors Mounting Low-Noise MEMS Accelerometers

Author:

Crognale Marianna1ORCID,Rinaldi Cecilia1ORCID,Potenza Francesco2ORCID,Gattulli Vincenzo1ORCID,Colarieti Andrea3,Franchi Fabio4ORCID

Affiliation:

1. Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy

2. Department of Engineering and Geology, University “G. d’Annunzio” of Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy

3. West Aquila S.r.l., S.S. 17 snc c/o Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy

4. Department of Information Engineering, Computer Science and Mathematics, Università degli Studi dell’Aquila, Via Vetoio, 67100 L’Aquila, Italy

Abstract

Recently, there has been increased interest in adopting novel sensing technologies for continuously monitoring structural systems. In this respect, micro-electrical mechanical system (MEMS) sensors are widely used in several applications, including structural health monitoring (SHM), in which accelerometric samples are acquired to perform modal analysis. Thanks to their significantly lower cost, ease of installation in the structure, and lower power consumption, they enable extensive, pervasive, and battery-less monitoring systems. This paper presents an innovative high-performance device for SHM applications, based on a low-noise triaxial MEMS accelerometer, providing a guideline and insightful results about the opportunities and capabilities of these devices. Sensor nodes have been designed, developed, and calibrated to meet structural vibration monitoring and modal identification requirements. These components include a protocol for reliable command dissemination through network and data collection, and improvements to software components for data pipelining, jitter control, and high-frequency sampling. Devices were tested in the lab using shaker excitation. Results demonstrate that MEMS-based accelerometers are a feasible solution to replace expensive piezo-based accelerometers. Deploying MEMS is promising to minimize sensor node energy consumption. Time and frequency domain analyses show that MEMS can correctly detect modal frequencies, which are useful parameters for damage detection. The acquired data from the test bed were used to examine the functioning of the network, data transmission, and data quality. The proposed architecture has been successfully deployed in a real case study to monitor the structural health of the Marcus Aurelius Exedra Hall within the Capitoline Museum of Rome. The performance robustness was demonstrated, and the results showed that the wired sensor network provides dense and accurate vibration data for structural continuous monitoring.

Funder

Italian Ministry of Economic development

NATO Science for Peace and Security Programme

LAZIO INNOVA

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3