Host–Virus Cophylogenetic Trajectories: Investigating Molecular Relationships between Coronaviruses and Bat Hosts

Author:

Li Wanlin1,Tahiri Nadia1ORCID

Affiliation:

1. Department of Computer Science, University of Sherbrooke, 2500 Bd University, Sherbrooke, QC J1K 2R1, Canada

Abstract

Bats, with their virus tolerance, social behaviors, and mobility, are reservoirs for emerging viruses, including coronaviruses (CoVs) known for genetic flexibility. Studying the cophylogenetic link between bats and CoVs provides vital insights into transmission dynamics and host adaptation. Prior research has yielded valuable insights into phenomena such as host switching, cospeciation, and other dynamics concerning the interaction between CoVs and bats. Nonetheless, a distinct gap exists in the current literature concerning a comparative cophylogenetic analysis focused on elucidating the contributions of sequence fragments to the co-evolution between hosts and viruses. In this study, we analyzed the cophylogenetic patterns of 69 host–virus connections. Among the 69 host–virus links examined, 47 showed significant cophylogeny based on ParaFit and PACo analyses, affirming strong associations. Focusing on two proteins, ORF1ab and spike, we conducted a comparative analysis of host and CoV phylogenies. For ORF1ab, the specific window ranged in multiple sequence alignment (positions 520–680, 770–870, 2930–3070, and 4910–5080) exhibited the lowest Robinson–Foulds (RF) distance (i.e., 84.62%), emphasizing its higher contribution in the cophylogenetic association. Similarly, within the spike region, distinct window ranges (positions 0–140, 60–180, 100–410, 360–550, and 630–730) displayed the lowest RF distance at 88.46%. Our analysis identified six recombination regions within ORF1ab (positions 360–1390, 550–1610, 680–1680, 700–1710, 2060–3090, and 2130–3250), and four within the spike protein (positions 10–510, 50–560, 170–710, and 230–730). The convergence of minimal RF distance regions with combination regions robustly affirms the pivotal role of recombination in viral adaptation to host selection pressures. Furthermore, horizontal gene transfer reveals prominent instances of partial gene transfer events, occurring not only among variants within the same host species but also crossing host species boundaries. This suggests a more intricate pattern of genetic exchange. By employing a multifaceted approach, our comprehensive strategy offers a nuanced understanding of the intricate interactions that govern the co-evolutionary dynamics between bat hosts and CoVs. This deeper insight enhances our comprehension of viral evolution and adaptation mechanisms, shedding light on the broader dynamics that propel viral diversity.

Funder

fonds de recherche du Québec—Nature and technologies

Natural Sciences and Engineering Research Council of Canada

University of Sherbrooke

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3