Diosgenin Inhibits ROS Generation by Modulating NOX4 and Mitochondrial Respiratory Chain and Suppresses Apoptosis in Diabetic Nephropathy

Author:

Zhong Yujie1,Wang Lei1,Jin Ruyi1,Liu Jiayu1,Luo Ruilin1,Zhang Yinghan1,Zhu Lin2,Peng Xiaoli1

Affiliation:

1. College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China

2. Qinling National Botanical Garden, Xi’an 710061, China

Abstract

Diosgenin (DIO) is a dietary steroid sapogenin possessing multiple biological functions, such as the amelioration of diabetes. However, the remission effect of DIO on diabetic nephropathy (DN) underlying oxidative stress and cell apoptosis remains unclear. Here, the effect of DIO on ROS generation and its induced cell apoptosis was studied in vitro and in vivo. Renal proximal tubular epithelial (HK-2) cells were treated with DIO (1, 2, 4 µM) under high glucose (HG, 30 mM) conditions. DN rats were induced by a high-fat diet combined with streptozotocin, followed by administration of DIO for 8 weeks. Our data suggested that DIO relieved the decline of HK-2 cell viability and renal pathological damage in DN rats. DIO also relieved ROS (O2− and H2O2) production. Mechanistically, DIO inhibited the expression of NOX4 and restored mitochondrial respiratory chain (MRC) complex I-V expressions. Further, DIO inhibited mitochondrial apoptosis by ameliorating mitochondrial membrane potential (MtMP) and down-regulating the expressions of CytC, Apaf-1, caspase 3, and caspase 9, while up-regulating Bcl2 expression. Moreover, the ER stress and its associated cell apoptosis were inhibited through decreasing PERK, p-PERK, ATF4, IRE1, p-CHOP, and caspase 12 expressions. Collectively, DIO inhibited ROS production by modulating NOX4 and MRC complexes, which then suppressed apoptosis regulated by mitochondria and ER stress, thereby attenuating DN.

Funder

Student’s Platform for Innovation and Entrepreneurship Training Program

Science and Technology Plan Project of Shaanxi Province

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3