Application of p and n-Type Silicon Nanowires as Human Respiratory Sensing Device

Author:

Fakhri Elham1ORCID,Sultan Muhammad Taha1,Manolescu Andrei1ORCID,Ingvarsson Snorri2,Svavarsson Halldor Gudfinnur1ORCID

Affiliation:

1. Department of Engineering, Reykjavik University, Menntavegur 1, 107 Reykjavik, Iceland

2. Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland

Abstract

Accurate and fast breath monitoring is of great importance for various healthcare applications, for example, medical diagnoses, studying sleep apnea, and early detection of physiological disorders. Devices meant for such applications tend to be uncomfortable for the subject (patient) and pricey. Therefore, there is a need for a cost-effective, lightweight, small-dimensional, and non-invasive device whose presence does not interfere with the observed signals. This paper reports on the fabrication of a highly sensitive human respiratory sensor based on silicon nanowires (SiNWs) fabricated by a top-down method of metal-assisted chemical-etching (MACE). Besides other important factors, reducing the final cost of the sensor is of paramount importance. One of the factors that increases the final price of the sensors is using gold (Au) electrodes. Herein, we investigate the sensor’s response using aluminum (Al) electrodes as a cost-effective alternative, considering the fact that the electrode’s work function is crucial in electronic device design, impacting device electronic properties and electron transport efficiency at the electrode–semiconductor interface. Therefore a comparison is made between SiNWs breath sensors made from both p-type and n-type silicon to investigate the effect of the dopant and electrode type on the SiNWs respiratory sensing functionality. A distinct directional variation was observed in the sample’s response with Au and Al electrodes. Finally, performing a qualitative study revealed that the electrical resistance across the SiNWs renders greater sensitivity to breath than to dry air pressure. No definitive research demonstrating the mechanism behind these effects exists, thus prompting our study to investigate the underlying process.

Funder

The Icelandic Centre for Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3