Dynamic-Distance-Based Thresholding for UAV-Based Face Verification Algorithms

Author:

Diez-Tomillo Julio1ORCID,Alcaraz-Calero Jose Maria1ORCID,Wang Qi1ORCID

Affiliation:

1. School of Computing, Engineering and Physical Sciences (CEPS), University of the West of Scotland (UWS), Paisley PA1 2BE, UK

Abstract

Face verification, crucial for identity authentication and access control in our digital society, faces significant challenges when comparing images taken in diverse environments, which vary in terms of distance, angle, and lighting conditions. These disparities often lead to decreased accuracy due to significant resolution changes. This paper introduces an adaptive face verification solution tailored for diverse conditions, particularly focusing on Unmanned Aerial Vehicle (UAV)-based public safety applications. Our approach features an innovative adaptive verification threshold algorithm and an optimised operation pipeline, specifically designed to accommodate varying distances between the UAV and the human subject. The proposed solution is implemented based on a UAV platform and empirically compared with several state-of-the-art solutions. Empirical results have shown that an improvement of 15% in accuracy can be achieved.

Funder

EU Horizon 2020 ARCADIAN-IoT project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AerialFace: A Light Weight Framework for Unmanned Aerial Vehicle Face Recognition;2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition (FG);2024-05-27

2. Applying of Pre-Trained SotA CNN Models at a Local Enterprise for Human Identification: Comparative Analysis of Accuracy;2024 International Russian Smart Industry Conference (SmartIndustryCon);2024-03-25

3. Face Verification Algorithms for UAV Applications: An Empirical Comparative Analysis;Journal of Communications Software and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3