Abstract
Understanding the nonlinear dynamic characteristics of engineering structures is challenging, especially for the systems that exhibit asymmetric nonlinear behavior. This paper compared four parameter identification methods for asymmetric nonlinear systems incorporating quadratic and cubic stiffness nonlinearities. Hilbert transform, zero-crossing, direct quadrature, and wavelet transform were used to obtain the backbone, envelope, and restoring force curves from the free vibration time history. A nonlinear curve-fitting method was then applied to estimate the stiffness parameters of the asymmetric systems, and a linear least square fitting approach was utilized to estimate the damping parameters of the asymmetric systems. We used the Helmholtz–Duffing oscillator as a numerical example and a nonlinear vibration absorber with geometric imperfections to verify the feasibility and accuracy of these methods. The advantages and disadvantages of these methods and the deviations in estimated results are discussed.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献