Crop Mapping Using the Historical Crop Data Layer and Deep Neural Networks: A Case Study in Jilin Province, China

Author:

Jiang Deyang,Chen Shengbo,Useya JulianaORCID,Cao Lisai,Lu TianqiORCID

Abstract

Machine learning combined with satellite image time series can quickly, and reliably be implemented to map crop distribution and growth monitoring necessary for food security. However, obtaining a large number of field survey samples for classifier training is often time-consuming and costly, which results in the very slow production of crop distribution maps. To overcome this challenge, we propose an ensemble learning approach from the existing historical crop data layer (CDL) to automatically create multitudes of samples according to the rules of spatiotemporal sample selection. Sentinel-2 monthly composite images from 2017 to 2019 for crop distribution mapping in Jilin Province were mosaicked and classified. Classification accuracies of four machine learning algorithms for a single-month and multi-month time series were compared. The results show that deep neural network (DNN) performed the best, followed by random forest (RF), then decision tree (DT), and support vector machine (SVM) the least. Compared with other months, July and August have higher classification accuracy, and the kappa coefficients of 0.78 and 0.79, respectively. Compared with a single phase, the kappa coefficient gradually increases with the growth of the time series, reaching 0.94 in August at the earliest, and then the increase is not obvious, and the highest in the whole growth cycle is 0.95. During the mapping process, time series of different lengths produced different classification results. Wetland types were misclassified as rice. In such cases, authors combined time series of two lengths to correct the misclassified rice types. By comparing with existing products and field points, rice has the highest consistency, followed by corn, whereas soybeans have the least consistency. This shows that the generated sample data set and trained model in this research can meet the crop mapping accuracy and simultaneously reduce the cost of field surveys. For further research, more years and types of crops should be considered for mapping and validation.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3