Analysis of Climate Variability and Its Implications on Rangelands in the Limpopo Province

Author:

Maluleke Phumzile12ORCID,Moeletsi Mokhele E.23,Tsubo Mitsuru4

Affiliation:

1. Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida 1710, South Africa

2. Agricultural Research Council-Natural Resources and Engineering, Private Bag X79, Pretoria 0001, South Africa

3. Risks and Vulnerability Assessment Centre, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa

4. Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan

Abstract

In recent decades, southern Africa has experienced a shift towards hotter and drier climate conditions, affecting vital sectors like agriculture, health, water, and energy. Scientific research has shown that the combination of high temperatures and unreliable rainfall can have detrimental effects on agricultural production. Thus, this study focused on assessing climate variability, with implications on rangelands in the Limpopo Province of South Africa over 38 years. Historical climate data from 15 stations, including rainfall and minimum and maximum temperatures from 1980 to 2018, were analysed. To achieve the main objective, various statistics including mean, standard deviation, and coefficient of variation (CV) were computed for all variables across four seasons. The results highlighted significant variability in rainfall, with Musina (71.2%) and Tshiombo (88.3%) stations displaying the highest variability during the September-to-April season. Both minimum and maximum temperatures displayed low variability. The Mann–Kendall test revealed both increasing and decreasing trends in minimum temperatures and rainfall across different stations. Notably, there was a significant increase in maximum temperatures. This study provides valuable climate information for decision makers, aiding in the planning and management of agricultural activities, particularly in understanding how climate variations affect forage availability in rangelands.

Funder

Water Research Commission

Publisher

MDPI AG

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3