FLEX-IoT: Secure and Resource-Efficient Network Boot System for Flexible-IoT Platform

Author:

Park Keon-HoORCID,Kim Seong-JinORCID,Yun JoobeomORCID,Lim Seung-HoORCID,Park Ki-WoongORCID

Abstract

In an internet of things (IoT) platform with a copious number of IoT devices and active variation of operational purpose, IoT devices should be able to dynamically change their system images to play various roles. However, the employment of such features in an IoT platform is hindered by several factors. Firstly, the trivial file transfer protocol (TFTP), which is generally used for network boot, has major security vulnerabilities. Secondly, there is an excessive demand for the server during the network boot, since there are numerous IoT devices requesting system images according to the variation of their roles, which exerts a heavy network overhead on the server. To tackle these challenges, we propose a system termed FLEX-IoT. The proposed system maintains a FLEX-IoT orchestrater which uses an IoT platform operation schedule to flexibly operate the IoT devices in the platform. The IoT platform operation schedule contains the schedules of all the IoT devices on the platform, and the FLEX-IoT orchestrater employs this schedule to flexibly change the mode of system image transfer at each moment. FLEX-IoT consists of a secure TFTP service, which is fully compatible with the conventional TFTP, and a resource-efficient file transfer method (adaptive transfer) to streamline the system performance of the server. The proposed secure TFTP service comprises of a file access control and attacker deception technique. The file access control verifies the identity of the legitimate IoT devices based on the hash chain shared between the IoT device and the server. FLEX-IoT provides security to the TFTP for a flexible IoT platform and minimizes the response time for network boot requests based on adaptive transfer. The proposed system was found to significantly increase the attack-resistance of TFTP with little additional overhead. In addition, the simulation results show that the volume of transferred system images on the server decreased by 27% on average, when using the proposed system.

Funder

Institute for Information and Communications Technology Promotion

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference29 articles.

1. Leading the IoT. Technical Report, Gartnerhttps://www.gartner.com/en/documents/3664326/iot-s-challenges-and-opportunities-in-2017-a-gartner-tre

2. Internet of Things(IoT) Connected Devices Installed as Worldwide from 2015 to 2025https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

3. Towards multilayer interoperability of heterogeneous IoT platforms: The INTER-IoT approach;Fortino,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3