Bio-Inspired Curved-Elliptical Lattice Structures for Enhanced Mechanical Performance and Deformation Stability

Author:

Guo Zhengmiao1,Yang Fan123ORCID,Li Lingbo1,Wu Jiacheng1

Affiliation:

1. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

2. Key Laboratory of AI-Aided Airworthiness of Civil Aircraft Structures, Civil Aviation Administration of China, Tongji University, Shanghai 200092, China

3. State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China

Abstract

Lattice structures, characterized by their lightweight nature, high specific mechanical properties, and high design flexibility, have found widespread applications in fields such as aerospace and automotive engineering. However, the lightweight design of lattice structures often presents a trade-off between strength and stiffness. To tackle this issue, a bio-inspired curved-elliptical (BCE) lattice is proposed to enhance the mechanical performance and deformation stability of three-dimensional lattice structures. BCE lattice specimens with different parameters were fabricated using selective laser melting (SLM) technology, followed by quasi-static compression tests. Finite element (FE) numerical simulations were also carried out for validation. The results demonstrate that the proposed BCE lattice structures exhibit stronger mechanical performance and more stable deformation modes that can be adjusted through parameter tuning. Specifically, by adjusting the design parameters, the BCE lattice structure can exhibit a bending-dominated delocalized deformation mode, avoiding catastrophic collapse during deformation. The specific energy absorption (SEA) can reach 24.6 J/g at a relative density of only 8%, with enhancements of 48.5% and 297.6% compared with the traditional energy-absorbing lattices Octet and body-center cubic (BCC), respectively. Moreover, the crushing force efficiency (CFE) of the BCE lattice structure surpasses those of Octet and BCC by 34.9% and 15.8%, respectively. Through a parametric study of the influence of the number of peaks N and the curve amplitude A on the compression performance of the BCE lattice structure, the compression deformation mechanism is further analyzed. The results indicate that the curve amplitude A and the number of peaks N have significant impacts on the deformation mode of the BCE lattice. By adjusting the parameters N and A, a structure with a combination of high energy absorption, high stiffness, and strong fracture resistance can be obtained, integrating the advantages of tensile-dominated and bending-dominated lattice structures.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3