Effect of Industrial Byproduct Gypsum on the Mechanical Properties and Stabilization of Hazardous Elements of Cementitious Materials: A Review

Author:

Wu Pengfei12,Liu Xinyue12,Liu Xiaoming12ORCID,Zhang Zengqi12ORCID,Wei Chao12

Affiliation:

1. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China

2. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Industrial byproduct gypsum (BPG) is a secondary product that is mainly composed of calcium sulfate discharged during industrial production. BPG primarily consists of desulfurized gypsum, phosphogypsum, and titanium gypsum, which account for 88% of the total BPG in China. The large-scale utilization of these three types of solid waste is crucial for the safe disposal of BPG. BPG contains various impurities and harmful elements, limiting its applications. The continuous accumulation of BPG poses a serious threat to the safety of the environment. Based on a literature review (2021–2023), it was found that 52% of BPG is used in the preparation of cementitious materials, and the addition of BPG results in an average improvement of 7–30% in the mechanical properties of cementitious materials. Moreover, BPG has a positive impact on the immobilization of hazardous elements in raw materials. Therefore, the utilization of BPG in cementitious materials is beneficial for its large-scale disposal. This study primarily reviews the effects and mechanisms of BPG on the mechanical properties of cementitious materials and the solidification of hazardous elements. Most importantly, the review reveals that BPG positively influences the hydration activity of silica–alumina-based solid waste (such as steel slag and blast furnace slag) and alkaline solid waste (such as carbide slag and red mud). This improves the proportion of solid waste in cement and reduces production costs and carbon emissions. Finally, this article summarizes and proposes the application of BPG in cementitious materials. The application of BPG + silica–alumina solid waste + alkaline solid-waste-based cementitious materials is expected to realize a new type of green ecological chain for the joint utilization of multiple industrial solid wastes and to promote the low-carbon sustainable development of industrial clusters.

Funder

National Natural Science Foundation of China

Young Elite Scientists Sponsorship Program by CAST

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3