Predicting Sodium-Ion Battery Performance through Surface Chemistry Analysis and Textural Properties of Functionalized Hard Carbons Using AI

Author:

Warren-Vega Walter M.1ORCID,Zárate-Guzmán Ana I.1,Carrasco-Marín Francisco2ORCID,Ramos-Sánchez Guadalupe3,Romero-Cano Luis A.1ORCID

Affiliation:

1. Grupo de Investigación en Materiales y Fenómenos de Superficie, Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Av. Patria 1201, C.P., Zapopan 45129, Mexico

2. Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain

3. Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Mexico City 09340, Mexico

Abstract

Traditionally, the performance of sodium-ion batteries has been predicted based on a single characteristic of the electrodes and its relationship to specific capacity increase. However, recent studies have shown that this hypothesis is incorrect because their performance depends on multiple physical and chemical variables. Due to the above, the present communication shows machine learning as an innovative strategy to predict the performance of functionalized hard carbon anodes prepared from grapefruit peels. In this sense, a three-layer feed-forward Artificial Neural Network (ANN) was designed. The inputs used to feed the ANN were the physicochemical characteristics of the materials, which consisted of mercury intrusion porosimetry data (SHg and average pore), elemental analysis (C, H, N, S), ID/IG ratio obtained from RAMAN studies, and X-ray photoemission spectroscopy data of the C1s, N1s, and O1s regions. In addition, two more inputs were added: the cycle number and the applied C-rate. The ANN architecture consisted of a first hidden layer with a sigmoid transfer function and a second layer with a log-sigmoid transfer function. Finally, a sigmoid transfer function was used in the output layer. Each layer had 10 neurons. The training algorithm used was Bayesian regularization. The results show that the proposed ANN correctly predicts (R2 > 0.99) the performance of all materials. The proposed strategy provides critical insights into the variables that must be controlled during material synthesis to optimize the process and accelerate progress in developing tailored materials.

Funder

Dirección de Investigación-Universidad Autónoma de Guadalajara

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3