Green Preparation of S, N Co-Doped Low-Dimensional C Nanoribbon/C Dot Composites and Their Optoelectronic Response Properties in the Visible and NIR Regions

Author:

Ma Xingfa1ORCID,Zhang Xintao1,Gao Mingjun1,Wang You2,Li Guang2

Affiliation:

1. School of Environmental and Material Engineering, Center of Advanced Functional Materials, Yantai University, Yantai 264005, China

2. National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China

Abstract

The green production of nanocomposites holds great potential for the development of new materials. Graphene is an important class of carbon-based materials. Despite its high carrier mobility, it has low light absorption and is a zero-bandgap material. In order to tune the bandgap and improve the light absorption, S, N co-doped low-dimensional C/C nanocomposites with polymer and graphene oxide nanoribbons (the graphene oxide nanoribbons were prepared by open zipping of carbon nanotubes in a previous study) were synthesized by one-pot carbonization through dimensional-interface and phase-interface tailoring of nanocomposites in this paper. The resulting C/C nanocomposites were coated on untreated A4 printing paper and the optoelectronic properties were investigated. The results showed that the S, N co-doped C/C nanoribbon/carbon dot hybrid exhibited enhanced photocurrent signals of the typical 650, 808, 980, and 1064 nm light sources and rapid interfacial charge transfer compared to the N-doped counterpart. These results can be attributed to the introduction of lone electron pairs of S, N elements, resulting in more transition energy and the defect passivation of carbon materials. In addition, the nanocomposite also exhibited some electrical switching response to the applied strain. The photophysical and doping mechanisms are discussed. This study provides a facile and green chemical approach to prepare hybrid materials with external stimuli response and multifunctionality. It provides some valuable information for the design of C/C functional nanocomposites through dimensional-interface and phase-interface tailoring and the interdisciplinary applications.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Reference124 articles.

1. Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime;Wright;Phys. Rev. Lett.,2009

2. Photomodulated optical and electrical properties of graphene;Tang;Nanophotonics,2022

3. Restoring the photovoltaic effect in graphene-based van der Waals heterojunctions towards self powered high-detectivity photodetectors;Li;Nano Energy,2019

4. Broadband photoresponse of graphene photodetector from visible to long-wavelength infrared wavelengths;Ogawa;Opt. Eng.,2019

5. Graphene van der Waals heterostructures for high-performance photodetectors;Geng;J. Mater. Chem. C Mater.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3