Abstract
Recent advances in nanomaterials technology create the new possibility to fabricate high performance sensors. However, there has been limitations in terms of multivariate measurable and interoperable sensors. In this study, we fabricated an interoperable silver nanoparticle sensor fabricated by an aerodynamically focused nanomaterial (AFN) printing system which is a direct printing technique for inorganic nanomaterials onto a flexible substrate. The printed sensor exhibited the maximum measurable frequency of 850 Hz, and a gauge factor of 290.62. Using a fabricated sensor, we evaluated the sensing performance and demonstrated the measurement independency of strain and vibration sensing. Furthermore, using the proposed signal separation algorithm based on the Kalman filter, strain and vibration were each measured in real time. Finally, we applied the printed sensor to quadrotor condition monitoring to predict the motion of a quadrotor.
Funder
Ministry of Science and ICT, South Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献