Abstract
Channel estimation is a challenging task in a millimeter-wave (mm Wave) massive multiple-input multiple-output (MIMO) system. The existing deep learning scheme, which learns the mapping from the input to the target channel, has great difficulty in estimating the exact channel state information (CSI). In this paper, we consider the quantized received measurements as a low-resolution image, and we adopt the deep learning-based image super-resolution technique to reconstruct the mm Wave channel. Specifically, we exploit a state-of-the-art channel estimation framework based on residual learning and multi-path feature fusion (RL-MFF-Net). Firstly, residual learning makes the channel estimator focus on learning high-frequency residual information between the quantized received measurements and the mm Wave channel, while abundant low-frequency information is bypassed through skip connections. Moreover, to address the estimator’s gradient dispersion problem, a dense connection is added to the residual blocks to ensure the maximum information flow between the layers. Furthermore, the underlying mm Wave channel local features extracted from different residual blocks are preserved by multi-path feature fusion. The simulation results demonstrate that the proposed scheme outperforms traditional methods as well as existing deep learning methods, especially in the low signal-to-noise-ration (SNR) region.
Funder
Guizhou Science and Technology Foundation
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. CogNet: Cognitive Super Resolution Network for Persistent End-to-End Mobility Communication in MIMO Systems;2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT);2023-05-25