UT-1 Transporter Expression in the Spiny Dogfish (Squalus acanthias): UT-1 Protein Shows a Different Localization in Comparison to That of Other Sharks

Author:

Cutler Christopher P.1,Omoregie Esosa1,Ojo Tolulope2ORCID

Affiliation:

1. Department of Biology, Georgia Southern University, Statesboro, GA 30460-8042, USA

2. Department of Biology, Baylor University, Waco, TX 76706, USA

Abstract

The original UT-1 transporter gene was initially identified in the spiny dogfish (Squalus acanthias), but localization of the UT-1 protein was not determined. Subsequent UT-1 expression was shown to localize to the collecting tubule (CT) of the shark nephron in other shark species, with expression in a closely related chimaera species also located additionally at a lower level in the intermediate-I segment (IS-I) of the nephron. In spiny dogfish, two UT-1 splice variants are known (UT-1 long and short), and there was also a second UT-1 gene described (here termed Brain UT). In this study, a second splice variant of the second Brain UT gene was discovered. Expression profiles (mRNA) of UT-1 long and short and Brain UT were determined in a number of spiny dogfish tissues. Quantitative PCR in kidney samples showed that the level of the short variant of UT-1 was around 100 times higher than the long variant, which was itself expressed around 10 times higher than Brain UT cDNA/mRNA (in kidney). For the long variant, there was a significantly higher level of mRNA abundance in fish acclimatized to 75% seawater. Ultimately, three UT-1 antibodies were made that could bind to both the UT-1 short and long variant proteins. The first two of these showed bands of appropriate sizes on Western blots of around 52.5 and 46 kDa. The second antibody had some additional lower molecular weight bands. The third antibody was mainly bound to the 46 kDa band with faint 52.5 kDa staining. Both the 52.5 and 46 kDa bands were absent when the antibodies were pre-blocked with the peptide antigens used to make them. Across the three antibodies, there were many similarities in localization but differences in subcellular localization. Predominantly, antibody staining was greatest in the intermediate segment 1 (IS-I) and proximal (PIb) segments of the first sinus zone loop of the nephron, with reasonably strong expression also found at the start and middle of the late distal tubule (LDT; second sinus zone loop). While some expression in the collecting tubule (CT) could not be ruled out, the level of staining seemed to be low or non-existent in convoluted bundle zone nephron segments such as the CT. Hence, this suggests that spiny dogfish have a fundamentally different mode of urea absorption in comparison to that found in other shark species, potentially focused more on the nephron sinus zone loops than the CT.

Funder

Georgia Southern University

Publisher

MDPI AG

Reference33 articles.

1. Chapter 6 Fish;Moloiy;Comparative Physiology of Osmoregulation in Animals,1979

2. Shadwick, R.E., Farell, A., and Brauner, C. (2016). Chapter 5. Regulation of ions, acid-base, and nitrogenous waste in elasmobranchs. Physiology of Elasmobranch Fishes, Elsevier Science and Technology.

3. Evans, D.H. (1998). Osmotic and ionic regulation. The Physiology of Fishes, CRC Press. [2nd ed.].

4. Ammonia and urea metabolism in relation to gill function and acid-base balance in a marine elasmobranch, the spiny dogfish (Squalus acanthias);Wood;J. Exp. Biol.,1995

5. Molecular Characterization of an elasmobranch urea transporter;Smith;Am. J. Physiol.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3