Impact of Multi-Factor Features on Protein Secondary Structure Prediction

Author:

Dong Benzhi1,Liu Zheng1ORCID,Xu Dali1,Hou Chang1,Niu Na1,Wang Guohua1

Affiliation:

1. College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China

Abstract

Protein secondary structure prediction (PSSP) plays a crucial role in resolving protein functions and properties. Significant progress has been made in this field in recent years, and the use of a variety of protein-related features, including amino acid sequences, position-specific score matrices (PSSM), amino acid properties, and secondary structure trend factors, to improve prediction accuracy is an important technical route for it. However, a comprehensive evaluation of the impact of these factor features in secondary structure prediction is lacking in the current work. This study quantitatively analyzes the impact of several major factors on secondary structure prediction models using a more explanatory four-class machine learning approach. The applicability of each factor in the different types of methods, the extent to which the different methods work on each factor, and the evaluation of the effect of multi-factor combinations are explored in detail. Through experiments and analyses, it was found that PSSM performs best in methods with strong high-dimensional features and complex feature extraction capabilities, while amino acid sequences, although performing poorly overall, perform relatively well in methods with strong linear processing capabilities. Also, the combination of amino acid properties and trend factors significantly improved the prediction performance. This study provides empirical evidence for future researchers to optimize multi-factor feature combinations and apply them to protein secondary structure prediction models, which is beneficial in further optimizing the use of these factors to enhance the performance of protein secondary structure prediction models.

Funder

Key R&D Program of Heilongjiang Province

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3