Bcl-2 Orthologues, Buffy and Debcl, Can Suppress Drp1-Dependent Age-Related Phenotypes in Drosophila

Author:

Hasan Azra1,Staveley Brian E.1ORCID

Affiliation:

1. Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada

Abstract

The relationship of Amyotrophic Lateral Sclerosis, Parkinson’s disease, and other age-related neurodegenerative diseases with mitochondrial dysfunction has led to our study of the mitochondrial fission gene Drp1 in Drosophila melanogaster and aspects of aging. Previously, the Drp1 protein has been demonstrated to interact with the Drosophila Bcl-2 mitochondrial proteins, and Drp1 mutations can lead to mitochondrial dysfunction and neuronal loss. In this study, the Dopa decarboxylase-Gal4 (Ddc-Gal4) transgene was exploited to direct the expression of Drp1 and Drp1-RNAi transgenes in select neurons. Here, the knockdown of Drp1 seems to compromise locomotor function throughout life but does not alter longevity. The co-expression of Buffy suppresses the poor climbing induced by the knockdown of the Drp1 function. The consequences of Drp1 overexpression, which specifically reduced median lifespan and diminished climbing abilities over time, can be suppressed through the directed co-overexpression of pro-survival Bcl-2 gene Buffy or by the co-knockdown of the pro-cell death Bcl-2 homologue Debcl. Alteration of the expression of Drp1 acts to phenocopy neurodegenerative disease phenotypes in Drosophila, while overexpression of Buffy can counteract or rescue these phenotypes to improve overall health. The diminished healthy aging due to either the overexpression of Drp1 or the RNA interference of Drp1 has produced novel Drosophila models for investigating mechanisms underlying neurodegenerative disease.

Funder

Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant Program

Aging Research Centre of Newfoundland and Labrador (ARC-NL) Research Grant Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3