Chitosan-Modified AgNPs Efficiently Inhibit Swine Coronavirus-Induced Host Cell Infections via Targeting the Spike Protein

Author:

Wang Dongliang12,Yin Caiyun1,Bai Yihan2,Zhou Mingxia2,Wang Naidong2,Tong Chunyi1,Yang Yi2ORCID,Liu Bin1

Affiliation:

1. College of Biology, Hunan University, Changsha 410082, China

2. Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China

Abstract

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has filled a gap in our knowledge regarding the prevention of CoVs. Swine coronavirus (CoV) is a significant pathogen that causes huge economic losses to the global swine industry. Until now, anti-CoV prevention and control have been challenging due to the rapidly generated variants. Silver nanoparticles (AgNPs) with excellent antimicrobial activity have attracted great interest for biosafety prevention and control applications. In this study, we synthesized chitosan-modified AgNPs (Chi-AgNPs) with good biocompatibility to investigate their antiviral effects on swine CoVs. In vitro assays showed that Chi-AgNPs could significantly impaired viral entry. The direct interaction between Chi-AgNPs and CoVs can destroy the viral surface spike (S) protein secondary structure associated with viral membrane fusion, which is caused by the cleavage of disulfide bonds in the S protein. Moreover, the mechanism showed that Chi-AgNPs reduced the virus-induced apoptosis of Vero cells via the ROS/p53 signaling activation pathway. Our data suggest that Chi-AgNPs can serve as a preventive strategy for CoVs infection and provide a molecular basis for the viricidal effect of Chi-AgNPs on CoVs.

Funder

China Postdoctoral Science Foundation

Hunan Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Hunan Province Technology Breakthrough Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3