DRpred: A Novel Deep Learning-Based Predictor for Multi-Label mRNA Subcellular Localization Prediction by Incorporating Bayesian Inferred Prior Label Relationships

Author:

Wang Xiao12ORCID,Yang Lixiang1,Wang Rong3

Affiliation:

1. School of Computer Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450000, China

2. Henan Provincial Key Laboratory of Data Intelligence for Food Safety, Zhengzhou University of Light Industry, Zhengzhou 450000, China

3. School of Electronic Information, Zhengzhou University of Light Industry, Zhengzhou 450000, China

Abstract

The subcellular localization of messenger RNA (mRNA) not only helps us to understand the localization regulation of gene expression but also helps to understand the relationship between RNA localization pattern and human disease mechanism, which has profound biological and medical significance. Several predictors have been proposed for predicting the subcellular localization of mRNA. However, there is still considerable room for improvement in their predictive performance, especially regarding multi-label prediction. This study proposes a novel multi-label predictor, DRpred, for mRNA subcellular localization prediction. This predictor first utilizes Bayesian networks to capture the dependencies among labels. Subsequently, it combines these dependencies with features extracted from mRNA sequences using Word2vec, forming the input for the predictor. Finally, it employs a neural network combining BiLSTM and an attention mechanism to capture the internal relationships of the input features for mRNA subcellular localization. The experimental validation on an independent test set demonstrated that DRpred obtained a competitive predictive performance in multi-label prediction and outperformed state-of-the-art predictors in predicting single subcellular localizations, obtaining accuracies of 82.14%, 93.02%, 80.37%, 94.00%, 90.58%, 84.53%, 82.01%, 79.71%, and 85.67% for the chromatin, cytoplasm, cytosol, exosome, membrane, nucleolus, nucleoplasm, nucleus, and ribosome, respectively. It is anticipated to offer profound insights for biological and medical research.

Funder

Key Research Project of Colleges and Universities of Henan Province

Key Science and Technology Development Program of Henan Province

Training Program of Young Backbone Teachers in Colleges and Universities of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3