Enhancing Missense Variant Pathogenicity Prediction with MissenseNet: Integrating Structural Insights and ShuffleNet-Based Deep Learning Techniques

Author:

Liu Jing1,Chen Yingying1,Huang Kai23,Guan Xiao23

Affiliation:

1. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China

2. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

3. National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China

Abstract

The classification of missense variant pathogenicity continues to pose significant challenges in human genetics, necessitating precise predictions of functional impacts for effective disease diagnosis and personalized treatment strategies. Traditional methods, often compromised by suboptimal feature selection and limited generalizability, are outpaced by the enhanced classification model, MissenseNet (Missense Classification Network). This model, advancing beyond standard predictive features, incorporates structural insights from AlphaFold2 protein predictions, thus optimizing structural data utilization. MissenseNet, built on the ShuffleNet architecture, incorporates an encoder-decoder framework and a Squeeze-and-Excitation (SE) module designed to adaptively adjust channel weights and enhance feature fusion and interaction. The model’s efficacy in classifying pathogenicity has been validated through superior accuracy compared to conventional methods and by achieving the highest areas under the Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves (Area Under the Curve and Area Under the Precision-Recall Curve) in an independent test set, thus underscoring its superiority.

Funder

Shanghai Agricultural Science and Technology Innovation Program

Program of Shanghai Academic/Technology Research Leader

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3