Investigation of the Microbial Diversity in the Oryza sativa Cultivation Environment and Artificial Transplantation of Microorganisms to Improve Sustainable Mycobiota

Author:

Shi Yeu-Ching1,Zheng Yu-Juan2,Lin Yi-Ching2ORCID,Huang Cheng-Hao3,Shen Tang-Long4ORCID,Hsu Yu-Chia5ORCID,Lee Bao-Hong2

Affiliation:

1. Department of Food Sciences, National Chiayi University, Chiayi 60004, Taiwan

2. Department of Horticultural Sciences, National Chiayi University, Chiayi 60004, Taiwan

3. Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan

4. Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan

5. Department of Agronomy, National Chiayi University, Chiayi 60004, Taiwan

Abstract

Rice straw is not easy to decompose, it takes a long time to compost, and the anaerobic bacteria involved in the decomposition process produce a large amount of carbon dioxide (CO2), indicating that applications for rice straw need to be developed. Recycling rice straw in agricultural crops is an opportunity to increase the sustainability of grain production. Several studies have shown that the probiotic population gradually decreases in the soil, leading to an increased risk of plant diseases and decreased biomass yield. Because the microorganisms in the soil are related to the growth of plants, when the soil microbial community is imbalanced it seriously affects plant growth. We investigated the feasibility of using composted rice stalks to artificially cultivate microorganisms obtained from the Oryza sativa-planted environment for analyzing the mycobiota and evaluating applications for sustainable agriculture. Microbes obtained from the water-submerged part (group-A) and soil part (group-B) of O. sativa were cultured in an artificial medium, and the microbial diversity was analyzed with internal transcribed spacer sequencing. Paddy field soil was mixed with fermented paddy straw compost, and the microbes obtained from the soil used for O. sativa planting were designated as group-C. The paddy fields transplanted with artificially cultured microbes from group-A were designated as group-D and those from group-B were designated as group-E. We found that fungi and yeasts can be cultured in groups-A and -B. These microbes altered the soil mycobiota in the paddy fields after transplantation in groups-D and -E compared to groups-A and -B. Development in O. sativa post treatment with microbial transplantation was observed in the groups-D and -E compared to group-C. These results showed that artificially cultured microorganisms could be efficiently transplanted into the soil and improve the mycobiota. Phytohormones were involved in improving O. sativa growth and rice yield via the submerged part-derived microbial medium (group-D) or the soil part-derived microbial medium (group-E) treatments. Collectively, these fungi and yeasts may be applied in microbial transplantation via rice straw fermentation to repair soil mycobiota imbalances, facilitating plant growth and sustainable agriculture. These fungi and yeasts may be applied in microbial transplantation to repair soil mycobiota imbalances and sustainable agriculture.

Funder

National Science and Technology Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3