Potentialities of Vehicle Trajectory Big Data for Monitoring Potentially Fatigued Drivers and Explaining Vehicle Crashes on Motorway Sections

Author:

Chang Hyunho,Park Dongjoo

Abstract

Task-related fatigue, caused by prolonged driving, is a major cause of vehicle crashes. Despite noticeable academic achievements, monitoring drivers’ fatigue on road sections is still an ongoing challenge which must be met to prevent and reduce traffic accidents. Fortunately, individual instances of vehicle trajectory big data collected through advanced vehicle-GPS systems offer a strong opportunity to trace driving durations. We propose a new approach by which to monitor task-related fatigued drivers by directly using the ratio of potentially fatigued drivers (RFD) to all drivers for each road section. The method used to compute the RFD index was developed based on two inputs: the distribution of the driving duration (extracted from vehicle trajectory data), and the boundary condition of the driving duration between fatigued and non-fatigued states. We demonstrate the potentialities of the method using vehicle trajectory big data and real-life traffic accident data. Results showed that the measured RFD has a strong explanatory power with regard to the traffic accident rate, with a statistical correlation of 0.86 at least, for regional motorway sections. Therefore, it is expected that the proposed approach is a feasible means of successfully monitoring fatigued drivers in the present and near future era of smart-mobility big data.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. JHPFA-Net: Joint Head Pose and Facial Action Network for Driver Yawning Detection Across Arbitrary Poses in Videos;IEEE Transactions on Intelligent Transportation Systems;2023-11

2. An Eye Fatigue Recognition System using YOLOv2;2021 Innovations in Power and Advanced Computing Technologies (i-PACT);2021-11-27

3. Research on Driving Fatigue Alleviation Using Interesting Auditory Stimulation Based on VMD-MMSE;Entropy;2021-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3