Dynamic Shifts in the Root Microbiota of Cultivated Paphiopedilum armeniacum during Different Stages of Growth

Author:

Cao XiaoluORCID,Wang XiaojingORCID,Wang Tao,Chen Yan,Yao NaORCID

Abstract

Paphiopedilum armeniacum S. C. Chen et F. Y. Liu is an endangered lady’s slipper orchid species with high horticultural value. As observed for other orchids, mycorrhizal fungi and endophytic bacteria play important roles in the growth and development of P. armeniacum. In the present study, the community structure dynamics across three growth and development stages of cultivated P. armeniacum were investigated. The potential interactions between Tulasnellaceae fungi and core bacterial genera on one hand and the stability of the presumed mycorrhizal fungi communities on the other were analyzed in three growth stages of P. armeniacum to enhance our understanding of endophytic microbial community structure dynamics in the roots at different development stages. Based on sequencing, 3 and 16 phyla and 59 and 269 genera were identified in the fungal and bacterial communities, respectively. The predominant fungi and bacteria were Basidiomycota (62.90%) and Proteobacteria (43.98%), which exhibited changes in abundance and diversity depending on the growth stage of P. armeniacum. Assessment of the entire microbial communities from different growth stages showed that the seedling stage had the highest richness and diversity. The microbial communities recruited by P. armeniacum at the seedling stage were different from those recruited at the vegetative and reproductive growth stages, and the microbial communities recruited in the latter two stages overlapped. Tulasnellaceae were the only dominant fungal symbionts during P. armeniacum growth. Brevibacillus, Mycobacterium, and Sphingomonas, the three core genera, showed significant interactions with the main OTUs of Tulasnellaceae. Putative mycorrhizal fungi in P. armeniacum were relatively stable across different growth environments, and the core mycorrhizal fungi were uncultured Tulasnellaceae (OTU1). This could facilitate the ex situ conservation and commercial development of the endangered orchid.

Funder

Fundamental Research Funds of CAF

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Reference74 articles.

1. The Genus Paphiopedilum;Cribb,1998

2. Flora of China, Volume 25 (Orchidaceae);Wu,2009

3. Notes on some species of Paphiopedilum from Yunnan;Chen;Acta Bot. Yunnanica,1982

4. Cites, Appendices I, II and III http://www.cites.org/eng/app/appendices.php

5. Seasonal dynamics of mycorrhizal fungi in Paphiopedilum spicerianum (Rchb. f) Pfitzer — A critically endangered orchid from China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3