Projections of the Net Primary Production of Terrestrial Ecosystem and Spatiotemporal Responses to Climate Change in the Yangtze River Economic Belt

Author:

Yu Li,Zhou BotaoORCID,Xu Yuqing,Zhang Yongxiang,Gu Fengxue

Abstract

Evaluating the responses of net primary productivity (NPP) to climate change is essential for regional ecosystem management and adaptations to climate change. The Yangtze River Economic Belt (YREB) is a key ecological functional area and hotspot of carbon sequestration in China due to the high degree of forest coverage. We used a process-based ecosystem model to project terrestrial NPP and analyzed the response to climate change over the 21st century in the YREB under two representative concentration pathway (RCP) scenarios using the regional climate model. The results show that the projection of NPP generally increased by 13.5% under RCP4.5 and 16.4% under RCP8.5 in the middle of the century, by 23% under RCP4.5, and by 35% under RCP8.5 in the late term of the century compared with that from a reference period of current climate conditions (1985–2006). The rate of NPP change under the RCP8.5 scenario is higher than that under the RCP4.5 scenario. Similarly, the NPP is also projected to increase both with 1.5 and 2 °C global warming targets in the YREB. The magnitudes of NPP increment are approximately 14.7% with 1.5 °C and 21% with 2 °C warming targets compared with the current climate, which are higher than the average increments of China. Although NPP is projected to increase under the two scenarios, the tendency of NPP increasingly exhibits a slowdown after the 2060 s under the RCP4.5 scenario, and the growth rate of NPP is projected to drop in more than 31% of regional areas with the additional 0.5 °C warming. In contrast, under the RCP8.5 scenario, the trend in NPP keeps rising substantially, even above 2 °C global warming. However, the NPP in some provinces, including Jiangxi and Hunan, is projected to reduce at the end of the 21st century, probably because of temperature rises, precipitation decreases, and water demand increases. Generally, the NPP is projected to increase due to climate change, particularly temperature increase. However, temperature rising does not always show a positive effect on NPP increasing; the growth rate of NPP will slow down under the RCP4.5 scenario in the mid-late 21st century, and NPP will also reduce by the end of this century under the RCP8.5 scenario in some places, probably presenting some risks to terrestrial ecosystems in these areas, in terms of reduced functions and service decline, a weakened capacity of carbon sequestration, and reduced agricultural production.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3