A Novel Method of Near-Miss Event Detection with Software Defined RADAR in Improving Railyard Safety

Author:

Banerjee SubharthiORCID,Santos Jose,Hempel MichaelORCID,Ghasemzadeh Pejman,Sharif Hamid

Abstract

Railyards are one of the most challenging and complex workplace environments in any industry. Railyard workers are constantly surrounded by dangerous moving objects, in a noisy environment where distractions can easily result in accidents or casualties. Throughout the years, yards have been contributing 20–30% of the total accidents that happen in railroads. Monitoring the railyard workspace to keep personnel safe from falls, slips, being struck by large object, etc. and preventing fatal accidents can be particularly challenging due to the sheer number of factors involved, such as the need to protect a large geographical space, the inherent dynamicity of the situation workers find themselves in, the presence of heavy rolling stock, blind spots, uneven surfaces and a plethora of trip hazards, just to name a few. Since workers spend the majority of time outdoors, weather conditions also play an important role, i.e., snow, fog, rain, etc. Conventional sensor deployments in yards thus fail to consistently monitor this workspace. In this paper, the authors have identified these challenges and addressed them with a novel detection method using a multi-sensor approach. They have also proposed novel algorithms to detect, classify and remotely monitor Employees-on-Duty (EoDs) without hindering real-time decision-making of the EoD. In the proposed solution, the authors have used a fast spherical-to-rectilinear transform algorithm on fish-eye images to monitor a wide area and to address blindspots in visual monitoring, and employed Software-Defined RADAR (SDRADAR) to address the low-visibility problem. The sensors manage to monitor the workspace for 100 m with blind detection and classification. These algorithms have successfully maintained real-time processing delay of ≤0.1 s between consecutive frames for both SDRADAR and visual processing.

Publisher

MDPI AG

Subject

Public Health, Environmental and Occupational Health,Safety Research,Safety, Risk, Reliability and Quality

Reference24 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3