A Modified ADRC Scheme Based on Model Information for Maglev Train

Author:

Wang Hao12,Wang Zhiqiang1,Long Zhiqiang1

Affiliation:

1. College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China

2. Northwest Institute of Mechanical and Electrical Engineering, Xianyang 712099, China

Abstract

During the operation of maglev trains, they are subjected to various disturbances. The presence of these disturbances presents a significant challenge for attaining high-performance control and even poses the risk of system instability. To further enhance the anti-disturbance capability of maglev trains, this paper proposes a model information-assisted modified active disturbance rejection control (MADRC) approach. A mathematical model of the single-point suspension system of maglev trains is constructed for the design of the extended state observer (ESO), which is a modified extended state observer (MESO), and a nonlinear mechanism is incorporated to boost the performance of the ESO. Owing to the introduction of model information, the estimated quantity of disturbances by MESO no longer considers the system model deviation as a disturbance. Hence, the linear feedback control law is modified accordingly. The MESO is regarded as an ESO with time-varying gain using the equivalent gain method, and its stability is proven using the Lyapunov method. The tracking and anti-disturbance performances of different controllers are compared via simulation experiments. Suspension and anti-disturbance experiments are conducted on the single-point suspension experimental platform, verifying that the proposed MADRC has a more potent suppression ability for load disturbances in the suspension system.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3