Water Meter Reading for Smart Grid Monitoring

Author:

Martinelli Fabio,Mercaldo FrancescoORCID,Santone Antonella

Abstract

Many tasks that require a large workforce are automated. In many areas of the world, the consumption of utilities, such as electricity, gas and water, is monitored by meters that need to be read by humans. The reading of such meters requires the presence of an employee or a representative of the utility provider. Automatic meter reading is crucial in the implementation of smart grids. For this reason, with the aim to boost the implementation of the smart grid paradigm, in this paper, we propose a method aimed to automatically read digits from a dial meter. In detail, the proposed method aims to localise the dial meter from an image, to detect the digits and to classify the digits. Deep learning is exploited, and, in particular, the YOLOv5s model is considered for the localisation of digits and for their recognition. An experimental real-world case study is presented to confirm the effectiveness of the proposed method for automatic digit localisation recognition from dial meters.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference27 articles.

1. Colak, I. (2016, January 21–25). Introduction to smart grid. Proceedings of the 2016 International Smart Grid Workshop and Certificate Program (ISGWCP), Istanbul, Turkey.

2. Smart grids;Palensky;Annu. Rev. Environ. Resour.,2013

3. A survey of communication/networking in smart grids;Gao;Future Gener. Comput. Syst.,2012

4. Ali, A.S. (2013). Smart Grids: Opportunities, Developments, and Trends, Springer.

5. Zheng, J., Gao, D.W., and Lin, L. (2013, January 4–5). Smart meters in smart grid: An overview. Proceedings of the 2013 IEEE Green Technologies Conference (GreenTech), Denver, CO, USA.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3