SH-29 and SK-119 Attenuates Air-Pollution Induced Damage by Activating Nrf2 in HaCaT Cells

Author:

Kahremany ShirinORCID,Hofmann LukasORCID,Eretz-Kdosha Noy,Silberstein Eldad,Gruzman Arie,Cohen GuyORCID

Abstract

Air pollution has been repeatedly linked to numerous health-related disorders, including skin sensitization, oxidative imbalance, premature extrinsic aging, skin inflammation, and increased cancer prevalence. Nrf2 is a key player in the endogenous protective mechanism of the skin. We hypothesized that pharmacological activation of Nrf2 might reduce the deleterious action of diesel particulate matter (DPM), evaluated in HaCaT cells. SK-119, a recently synthesized pharmacological agent as well as 2,2′-((1E,1′E)-(1,4-phenylenebis(azaneylylidene))bis(methaneylylidene))bis(benzene-1,3,5-triol) (SH-29) were first evaluated in silico, suggesting a potent Nrf2 activation capacity that was validated in vitro. In addition, both compounds were able to attenuate key pathways underlying DPM damage, including cytosolic and mitochondrial reactive oxygen species (ROS) generation, tested by DC-FDA and MitoSOX fluorescent dye, respectively. This effect was independent of the low direct scavenging ability of the compounds. In addition, both SK-119 and SH-29 were able to reduce DPM-induced IL-8 hypersecretion in pharmacologically relevant concentrations. Lastly, the safety of both compounds was evaluated and demonstrated in the ex vivo human skin organ culture model. Collectively, these results suggest that Nrf2 activation by SK-119 and SH-29 can revert the deleterious action of air pollution.

Funder

Israel Ministry of Science and Technology, Regional R&D Centers

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference65 articles.

1. Air Pollution Policy in Israel

2. Europe’s Air Quality Status 2021 https://www.eea.europa.eu/ds_resolveuid/XMEN5DFSU8

3. The effects of outdoor air pollution on chronic illnesses

4. Air pollution and the skin

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3