Abstract
Redox-active humic acids (HA) are ubiquitous in terrestrial and aquatic systems and are involved in numerous electron transfer reactions affecting biogeochemical processes and fates of pollutants in soil environments. Redox-active contaminants are trapped in soil micropores (<2 nm) that have limited access to microbes and HA. Therefore, the contaminants whose molecular structure and properties are not damaged accumulate in the soil micropores and become potential pollution sources. Electron transfer capacities (ETC) of HA reflecting redox activities of low molecular weight fraction (LMWF, <2.5) HA can be detected by an electrochemical method, which is related to redox potentials (Eh) in soil and aquatic environments. Nevertheless, electron accepting capacities (EAC) and electron donating capacities (EDC) of these LMWF HA at different Eh are still unknown. EDC and EAC of different molecular weight HA at different Eh were analyzed using electrochemical methods. EAC of LMWF at −0.59 V was 12 times higher than that at −0.49 V, while EAC increased to 2.6 times when the Eh decreased from −0.59 V to −0.69 V. Afterward, LMWF can act as a shuttle to stimulate microbial Fe(III) reduction processes in microbial reduction experiments. Additionally, EAC by electrochemical analysis at a range of −0.49–−0.59 V was comparable to total calculated ETC of different molecular weight fractions of HA by microbial reduction. Therefore, it is indicated that redox-active functional groups that can be reduced at Eh range of −0.49–−0.59 are available to microbial reduction. This finding contributes to a novel perspective in the protection and remediation of the groundwater environment in the biogeochemistry process.
Funder
National Natural Science Foundation of China
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献