Efficacy of Artificial-Intelligence-Driven Differential-Diagnosis List on the Diagnostic Accuracy of Physicians: An Open-Label Randomized Controlled Study

Author:

Harada YukinoriORCID,Katsukura Shinichi,Kawamura Ren,Shimizu Taro

Abstract

Background: The efficacy of artificial intelligence (AI)-driven automated medical-history-taking systems with AI-driven differential-diagnosis lists on physicians’ diagnostic accuracy was shown. However, considering the negative effects of AI-driven differential-diagnosis lists such as omission (physicians reject a correct diagnosis suggested by AI) and commission (physicians accept an incorrect diagnosis suggested by AI) errors, the efficacy of AI-driven automated medical-history-taking systems without AI-driven differential-diagnosis lists on physicians’ diagnostic accuracy should be evaluated. Objective: The present study was conducted to evaluate the efficacy of AI-driven automated medical-history-taking systems with or without AI-driven differential-diagnosis lists on physicians’ diagnostic accuracy. Methods: This randomized controlled study was conducted in January 2021 and included 22 physicians working at a university hospital. Participants were required to read 16 clinical vignettes in which the AI-driven medical history of real patients generated up to three differential diagnoses per case. Participants were divided into two groups: with and without an AI-driven differential-diagnosis list. Results: There was no significant difference in diagnostic accuracy between the two groups (57.4% vs. 56.3%, respectively; p = 0.91). Vignettes that included a correct diagnosis in the AI-generated list showed the greatest positive effect on physicians’ diagnostic accuracy (adjusted odds ratio 7.68; 95% CI 4.68–12.58; p < 0.001). In the group with AI-driven differential-diagnosis lists, 15.9% of diagnoses were omission errors and 14.8% were commission errors. Conclusions: Physicians’ diagnostic accuracy using AI-driven automated medical history did not differ between the groups with and without AI-driven differential-diagnosis lists.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3