Effectiveness of a Central Discharge Element Sock for Plantar Temperature Reduction and Improving Comfort

Author:

Martínez-Nova AlfonsoORCID,Jiménez-Cano Víctor Manuel,Caracuel-López Juan Miguel,Gómez-Martín BeatrizORCID,Escamilla-Martínez Elena,Sánchez-Rodríguez Raquel

Abstract

U-shaped plantar cushions could help reduce stress affecting the central forefoot without the need for an orthosis, but they are yet to be integrated as an element in socks. The objective of this study was to verify the effectiveness of a sock with a central discharge element in terms of plantar temperature and comfort. The sample comprised 38 subjects (13 men and 25 women). Their plantar temperatures were measured with a thermographic camera in a basal situation and after each of two 10-minute walks around an indoor circuit during which they wore either control or experimental socks at random (the same design, weight, and fiber, but with the plantar cushioning element added). After the walks, each subject responded to a comfort questionnaire (five-point Likert scale), blindly scoring the two socks. The highest temperatures (28.3 ± 2.7 °C) were recorded in the zone of the second and third metatarsal heads. With the experimental socks, the observed temperature increase in the central forefoot zone was significantly less than with the control socks (31.6 vs 30.6 °C, p = 0.001). The subjects found the experimental socks to be more comfortable than the controls (4.63 ± 0.5 vs 4.03 ± 0.5, p < 0.001). The discharge element included in the experimental socks was effective since it reduced the contact zones and excess friction with the ground, thereby lessening overheating by more than 1°C. Furthermore, the experimental socks were perceived as being more comfortable by the subjects who had mild and occasional foot discomfort.

Funder

Junta de Extremadura

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3