Does Physical Activity Predict Obesity—A Machine Learning and Statistical Method-Based Analysis

Author:

Cheng XiaoluORCID,Lin Shuo-yuORCID,Liu Jin,Liu Shiyong,Zhang Jun,Nie PengORCID,Fuemmeler Bernard F.,Wang Youfa,Xue Hong

Abstract

Background: Obesity prevalence has become one of the most prominent issues in global public health. Physical activity has been recognized as a key player in the obesity epidemic. Objectives: The objectives of this study are to (1) examine the relationship between physical activity and weight status and (2) assess the performance and predictive power of a set of popular machine learning and traditional statistical methods. Methods: National Health and Nutrition Examination Survey (NHANES, 2003 to 2006) data were used. A total of 7162 participants met our inclusion criteria (3682 males and 3480 females), with average age ranging from 48.6 (normal weight) to 52.1 years old (overweight). Eleven classifying algorithms—including logistic regression, naïve Bayes, Radial Basis Function (RBF), local k-nearest neighbors (k-NN), classification via regression (CVR), random subspace, decision table, multiobjective evolutionary fuzzy classifier, random tree, J48, and multilayer perceptron—were implemented and evaluated, and they were compared with traditional logistic regression model estimates. Results: With physical activity and basic demographic status, of all methods analyzed, the random subspace classifier algorithm achieved the highest overall accuracy and area under the receiver operating characteristic (ROC) curve (AUC). The duration of vigorous-intensity activity in one week and the duration of moderate-intensity activity in one week were important attributes. In general, most algorithms showed similar performance. Logistic regression was middle-ranking in terms of overall accuracy, sensitivity, specificity, and AUC among all methods. Conclusions: Physical activity was an important factor in predicting weight status, with gender, age, and race/ethnicity being less but still essential factors associated with weight outcomes. Tailored intervention policies and programs should target the differences rooted in these demographic factors to curb the increase in the prevalence of obesity and reduce disparities among sub-demographic populations.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference48 articles.

1. Obesity and overweight;Levesque,2018

2. The Global Childhood Obesity Epidemic and the Association between Socio-Economic Status and Childhood Obesity;Wang,2012

3. Prevalence of Obesity among Adults and Youth: United States, 2015–2016;Hales,2017

4. Obesity in Adulthood and Its Consequences for Life Expectancy: A Life-Table Analysis

5. Lifetime Health and Economic Consequences of Obesity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3