Time-Variant Positive Air Pressure in Drainage Stacks as a Pathogen Transmission Pathway of COVID-19

Author:

Wong Ling-TimORCID,Mui Kwok-Wai,Cheng Cheng-LiORCID,Leung Polly Hang-MeiORCID

Abstract

Time-variant positive air pressure in a drainage stack poses a risk of pathogenic virus transmission into a habitable space, however, the excessive risk and its significance have not yet been sufficiently addressed for drainage system designs. This study proposes a novel measure for the probable pathogenic virus transmission risk of a high-rise drainage stack with the occurrence of positive air pressure. The proposed approach is based on time-variant positive air pressures measured in a 38 m high drainage stack of a full-scale experimental tower under steady flow conditions of flow rate 1–4 Ls−1 discharging at a height between 15 m to 33 m above the stack base. The maximum pressure and probabilistic positive air pressures in the discharging stack ventilation section with no water (Zone A of the discharging drainage stack) were determined. It was demonstrated that the positive air pressures were lower in frequency as compared with those in other stack zones and could propagate along the upper 1/3 portion of the ventilation pipe (H’ ≥ 0.63) towards the ventilation opening at the rooftop. As the probabilistic positive pressures at a stack height were found to be related to the water discharging height and flow rate, a risk model of positive air pressure is proposed. Taking the 119th, 124th, 140th and 11,547th COVID-19 cases of an epidemiological investigation in Hong Kong as a baseline of concern, excessive risk of system overuse was evaluated. The results showed that for a 20–80% increase in the frequency of discharge flow rate, the number of floors identified at risk increased from 1 to 9 and 1 to 6 in the 34- and 25-storey residential buildings, respectively. The outcome can apply to facilities planning for self-quarantine arrangements in high-rise buildings where pathogenic virus transmission associated with drainage system overuse is a concern.

Funder

Hong Kong Government

Research Grants Council of HKSAR

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3