Overshoot of the Respiratory Exchange Ratio during Recovery from Maximal Exercise Testing in Kidney Transplant Recipients

Author:

Patti AlessandroORCID,Neunhaeuserer Daniel,Gasperetti Andrea,Baioccato VeronicaORCID,Vecchiato MarcoORCID,Battista Francesca,Marchini Francesco,Bergamin MarcoORCID,Furian Lucrezia,Ermolao AndreaORCID

Abstract

The overshoot of the respiratory exchange ratio (RER) during recovery from exercise has been found to be reduced in magnitude among patients with heart failure. The aim of this study is to investigate whether this phenomenon could also be present in patients with peripheral, and not cardiac, limitations to exercise such as kidney transplant recipients (KTRs). In this retrospective cross-sectional study, KTRs were evaluated with maximal cardiopulmonary exercise testing (CPET) assessing the RER overshoot parameters during recovery: the RER at peak exercise, the maximum RER value reached during recovery, the magnitude of the RER overshoot (RER mag = (RER max-peak RER)/peak RER%) and the linear slope of the RER increase after the end of exercise. A total of 57 KTRs were included in the study (16 females), all of them showing a significant RER overshoot (RER mag: 28.4 ± 12.7%). Moreover, the RER mag showed significant correlations with the fitness of patients (peak VO2: ρ = 0.57, p < 0.01) and cardiorespiratory efficiency (VE/VCO2 slope: r = −0.32, p < 0.05; oxygen uptake efficiency slope (OUES): r = 0.48, p < 0.01). Indeed, the RER mag was significantly different between the subgroups stratified by Weber’s fitness class or a ventilatory efficiency class. Our study is the first to investigate recovery of the RER in a population of KTRs, which correlates well with known prognostic CPET markers of cardiorespiratory fitness, determining the RER mag as the most meaningful RER overshoot parameter. Thus, the RER recovery might be included in CPET evaluations to further improve prognostic risk stratifications in KTRs and other chronic diseases.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3