Particulate Matter and Premature Mortality: A Bayesian Meta-Analysis

Author:

Waidyatillake Nilakshi T.ORCID,Campbell Patricia T.ORCID,Vicendese DonORCID,Dharmage Shyamali C.ORCID,Curto Ariadna,Stevenson MarkORCID

Abstract

Background: We present a systematic review of studies assessing the association between ambient particulate matter (PM) and premature mortality and the results of a Bayesian hierarchical meta-analysis while accounting for population differences of the included studies. Methods: The review protocol was registered in the PROSPERO systematic review registry. Medline, CINAHL and Global Health databases were systematically searched. Bayesian hierarchical meta-analysis was conducted using a non-informative prior to assess whether the regression coefficients differed across observations due to the heterogeneity among studies. Results: We identified 3248 records for title and abstract review, of which 309 underwent full text screening. Thirty-six studies were included, based on the inclusion criteria. Most of the studies were from China (n = 14), India (n = 6) and the USA (n = 3). PM2.5 was the most frequently reported pollutant. PM was estimated using modelling techniques (22 studies), satellite-based measures (four studies) and direct measurements (ten studies). Mortality data were sourced from country-specific mortality statistics for 17 studies, Global Burden of Disease data for 16 studies, WHO data for two studies and life tables for one study. Sixteen studies were included in the Bayesian hierarchical meta-analysis. The meta-analysis revealed that the annual estimate of premature mortality attributed to PM2.5 was 253 per 1,000,000 population (95% CI: 90, 643) and 587 per 1,000,000 population (95% CI: 1, 39,746) for PM10. Conclusion: 253 premature deaths per million population are associated with exposure to ambient PM2.5. We observed an unstable estimate for PM10, most likely due to heterogeneity among the studies. Future research efforts should focus on the effects of ambient PM10 and premature mortality, as well as include populations outside Asia. Key messages: Ambient PM2.5 is associated with premature mortality. Given that rapid urbanization may increase this burden in the coming decades, our study highlights the urgency of implementing air pollution mitigation strategies to reduce the risk to population and planetary health.

Funder

Melbourne Energy Institute

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3