Abstract
Balance control with an upright posture is affected by many factors. This study was undertaken to investigate the effects of real-time visual feedback training, provided by smart wearable devices for COP changes for healthy females, on static stance. Thirty healthy female college students were randomly divided into three groups (visual feedback balance training group, non-visual feedback balance training group, and control group). Enhanced visual feedback on the screen appeared in different directions, in the form of fluctuations; the visual feedback balance training group received real-time visual feedback from the Podoon APP for training, while the non-visual feedback balance training group only performed an open-eye balance, without receiving real-time visual feedback. The control group did not do any balance training. The balance training lasted 4 weeks, three times a week for 30 min each time with 1–2 day intervals. After four weeks of balance training, the results showed that the stability of human posture control improved for the one leg static stance for the visual feedback balance training group with smart wearable devices. The parameters of COP max displacement, COP velocity, COP radius, and COP area in the visual feedback balance training group were significantly decreased in the one leg stance (p < 0.05). The results showed that the COP real-time visual feedback training provided by smart wearable devices can better reduce postural sway and improve body balance ability than general training, when standing quietly.
Funder
Lo-Hsu Medical Foundation
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献