An Egocentric Network Contact Tracing Experiment: Testing Different Procedures to Elicit Contacts and Places

Author:

Pilny Andrew,Huber C. Joseph

Abstract

Contact tracing is one of the oldest social network health interventions used to reduce the diffusion of various infectious diseases. However, some infectious diseases like COVID-19 amass at such a great scope that traditional methods of conducting contact tracing (e.g., face-to-face interviews) remain difficult to implement, pointing to the need to develop reliable and valid survey approaches. The purpose of this research is to test the effectiveness of three different egocentric survey methods for extracting contact tracing data: (1) a baseline approach, (2) a retrieval cue approach, and (3) a context-based approach. A sample of 397 college students were randomized into one condition each. They were prompted to anonymously provide contacts and populated places visited from the past four days depending on what condition they were given. After controlling for various demographic, social identity, psychological, and physiological variables, participants in the context-based condition were significantly more likely to recall more contacts (medium effect size) and places (large effect size) than the other two conditions. Theoretically, the research supports suggestions by field theory that assume network recall can be significantly improved by activating relevant activity foci. Practically, the research contributes to the development of innovative social network data collection methods for contract tracing survey instruments.

Funder

National Center for Advancing Translational Sciences

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference35 articles.

1. Contact tracing and disease control

2. Conducting Personal Network Research: A Practical Guide;McCarty,2019

3. Egocentric Network Analysis

4. U.S. Falling Short on Needed Contact Tracers, Experts Say. Wall Street Journal 20 May 2020 https://www.wsj.com/articles/u-s-needs-tens-of-thousands-of-contact-tracers-to-reopen-safely-experts-say-11589130000?reflink=desktopwebshare_permalink

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3