Performances of Limited Area Models for the WORKLIMATE Heat–Health Warning System to Protect Worker’s Health and Productivity in Italy

Author:

Grifoni DanieleORCID,Messeri AlessandroORCID,Crisci Alfonso,Bonafede MichelaORCID,Pasi Francesco,Gozzini BernardoORCID,Orlandini SimoneORCID,Marinaccio AlessandroORCID,Mari RiccardoORCID,Morabito MarcoORCID,

Abstract

Outdoor workers are particularly exposed to climate conditions, and in particular, the increase of environmental temperature directly affects their health and productivity. For these reasons, in recent years, heat-health warning systems have been developed for workers generally using heat stress indicators obtained by the combination of meteorological parameters to describe the thermal stress induced by the outdoor environment on the human body. There are several studies on the verification of the parameters predicted by meteorological models, but very few relating to the validation of heat stress indicators. This study aims to verify the performance of two limited area models, with different spatial resolution, potentially applicable in the occupational heat health warning system developed within the WORKLIMATE project for the Italian territory. A comparison between the Wet Bulb Globe Temperature predicted by the models and that obtained by data from 28 weather stations was carried out over about three summer seasons in different daily time slots, using the most common skill of performance. The two meteorological models were overall comparable for much of the Italian explored territory, while major limits have emerged in areas with complex topography. This study demonstrated the applicability of limited area models in occupational heat health warning systems.

Funder

BRIC-INAIL 2019- WORKLIMATE Project

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3