Effect of Ridge Height, Row Grade, and Field Slope on Nutrient Losses in Runoff in Contour Ridge Systems under Seepage with Rainfall Condition

Author:

An Juan,Geng Jibiao,Yang Huiling,Song Hongli,Wang BinORCID

Abstract

Seepage plays a key role in nutrient loss and easily occurs in widely-used contour ridge systems due to the ponding process. However, the characteristics of nutrient loss and its influential factors under seepage with rainfall condition in contour ridge systems are still unclear. In this study, 23 seepage and rainfall simulation experiments are arranged in an orthogonal rotatable central composite design to investigate the role of ridge height, row grade, and field slope on Nitrate (NO3−–N) and Orthophosphate (PO4+3–P) losses resulting from seepage in contour ridge systems. In total, three types of NO3−–N and PO4+3–P loss were observed according to erosion processes of inter-rill–headward, inter-rill–headward–contour failure, and inter-rill–headward–contour failure–rill. Our results demonstrated that second-order polynomial regression models were obtained to predict NO3−–N and PO4+3–P loss with the independent variables of ridge height, row grade, and field slope. Ridge height was the most important factor for nutrient loss, with a significantly positive effect and the greatest contribution (52.35–53.47%). The secondary factor of row grade exerted a significant and negative effect, and was with a contribution of 19.86–24.11% to nutrient loss. The interaction between ridge height and row grade revealed a significantly negative effect on NO3−–N loss, whereas interactions among the three factors did not significantly affect PO4+3–P loss. Field slope only significantly affected NO3−–N loss. The optimal design of a contour ridge system to control nutrient loss was obtained at ridge height of 8 cm, row grade of 2°, and field slope of 6.5°. This study provides a method to assess and model nutrient loss, and improves guidance to implement contour ridge systems in terms of nutrient loss control.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3