Mercury and Antibiotic Resistance Co-Selection in Bacillus sp. Isolates from the Almadén Mining District

Author:

Robas MarinaORCID,Probanza AgustínORCID,González DanielORCID,Jiménez Pedro A.ORCID

Abstract

Antibiotic resistance (AR) in the environment is of great global concern and a threat to public health. Soil bacteria, including Bacillus spp., could act as recipients and reservoirs of AR genes of clinical, livestock, or agricultural origin. These genes can be shared between bacteria, some of which could be potentially human pathogens. This process can be favored in conditions of abiotic stress, such as heavy metal contamination. The Almadén mining district (Ciudad Real, Spain) is one of the environments with the highest mercury (Hg) contamination worldwide. The link between heavy metal contamination and increased AR in environmental bacteria seems clear, due to co-resistance and co-selection phenomena. In the present study, 53 strains were isolated from rhizospheric and bulk soil samples in Almadén. AR was tested using Vitek® 2 and minimum inhibitory concentration (MIC) values were obtained and interpreted based on the criteria of the Clinical and Laboratory Standards Institute (CLSI) guidelines. Based on the resistance profiles, five different antibiotypes were established. The Hg minimum bactericidal concentration (MBC) of each strain was obtained using the plating method with increasing concentrations of HgCl2. A total of 72% of Bacillus spp. showed resistance to two or more commonly used antibiotics. A total of 38 isolates expressed AR to cephalosporins. Finally, the environmental co-selection of AR to cephalosporins and tetracyclines by selective pressure of Hg has been statistically demonstrated.

Funder

Fundación Banco Santander

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3