Pharmaceutical Products and Pesticides Toxicity Associated with Microplastics (Polyvinyl Chloride) in Artemia salina

Author:

Albendín María Gemma,Aranda VanessaORCID,Coello María Dolores,González-Gómez Carmen,Rodríguez-Barroso RocíoORCID,Quiroga José María,Arellano Juana MaríaORCID

Abstract

Pharmaceutical products, as well as insecticides and antimicrobials, have been extensively studied, but knowledge of their effects—especially those caused by their mixtures with microplastics—on aquatic organisms remains limited. However, it should be borne in mind that the state of knowledge on acute and chronic effects in aquatic organisms for pharmaceuticals and pesticides is not similar. In response, this investigation analyzed the presence of microplastics (polyvinyl chloride) and their impacts on the toxicity of chlorpyrifos (an insecticide) and triclosan (an antibacterial) when they coincide in the environment, alongside the two most consumed drugs of their type (hypolipemic and anticonvulsant, respectively), namely simvastatin and carbamazepine, in Artemia salina. LC50 and cholinesterase enzyme activity were calculated to determine the possible neurotoxicity associated with emergent contaminants in the treatments. The LC50 values obtained were 0.006 mg/dm3 for chlorpyrifos, 0.012 mg/dm3 for chlorpyrifos associated with microplastics, 4.979 mg/dm3 for triclosan, 4.957 mg/dm3 for triclosan associated with microplastics, 9.35 mg/dm3 for simvastatin, 10.29 mg/dm3 for simvastatin associated with microplastics, 43.25 mg/dm3 for carbamazepine and 46.50 mg/dm3 for carbamazepine associated with microplastics in acute exposure. These results indicate that the presence of microplastics in the medium reduces toxicity, considering the LC50 values. However, exposure to chlorpyrifos and carbamazepine, both alone and associated with microplastics, showed a decline in cholinesterase activity, confirming their neurotoxic effect. Nevertheless, no significant differences were observed with the biomarker cholinesterase between the toxicant and the toxicant with microplastics.

Funder

Ministerio de Ciencia, Innovación y Universidades

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3