Abstract
This research aims to explore the spatial pattern of vulnerability and resilience to natural hazards in northeastern Taiwan. We apply the spatially explicit resilience-vulnerability model (SERV) to quantify the vulnerability and resilience to natural hazards, including flood and debris flow events, which are the most common natural hazards in our case study area due to the topography and precipitation features. In order to provide a concise result, we apply the principal component analysis (PCA) to aggregate the correlated variables. Moreover, we use the spatial autocorrelation analysis to analyze the spatial pattern and spatial difference. We also adopt the geographically weighted regression (GWR) to validate the effectiveness of SERV. The result of GWR shows that SERV is valid and unbiased. Moreover, the result of spatial autocorrelation analysis shows that the mountain areas are extremely vulnerable and lack enough resilience. In contrast, the urban regions in plain areas show low vulnerability and high resilience. The spatial difference between the mountain and plain areas is significant. The topography is the most significant factor for the spatial difference. The high elevation and steep slopes in mountain areas are significant obstacles for socioeconomic development. This situation causes consequences of high vulnerability and low resilience. The other regions, the urban regions in the plain areas, have favorable topography for socioeconomic development. Eventually, it forms a scenario of low vulnerability and high resilience.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献