Phase Angle Is Related to 10 m and 30 m Sprint Time and Repeated-Sprint Ability in Young Male Soccer Players

Author:

Martins Priscila Custódio,Teixeira Anderson SantiagoORCID,Guglielmo Luiz Guilherme ANTONACCI,Francisco Juliana Sabino,Silva Diego Augusto Santos,Nakamura Fábio YuzoORCID,Lima Luiz Rodrigo Augustemak deORCID

Abstract

Objective: To examine the association between phase angle (PhA) and bioelectrical impedance vector analysis (BIVA) and components of physical performance in male youth soccer players. Design: Cross-sectional. Methods: Sixty-two players from two professional soccer academies were recruited. Electrical bioimpedance was used to obtain the PhA and BIVA. Body fat (BF) and lean soft tissue mass (LSTM) were measured by dual-energy X-ray absorptiometry. All players completed physical tests including the standing long jump (SLJ), Carminatti’s test (peak speed at the end of the test, PST-CAR), 10 m and 30 m straight-line sprints, and repeated-sprint ability (RSA) test (RSAbest and RSAmean times). Results: Adjusting for chronological age, BF, and LSTM, multiple regression analysis outputs showed that PhA remained inversely related to RSAmean (β = −0.362; p < 0.001), RSAbest (β = −0.239; p = 0.020), 10 m (β = −0.379; p = 0.012), and 30 m (β = −0.438; p < 0.001) sprint times, while the association with PST-CAR and SLJ performance were statistically non-significant. In addition, BIVA showed that differences in confidence ellipses were found between athletes in the reference population and the study sample (p < 0.05). The tolerance ellipses indicated that the athletes in the present study had more total body water (TCW) and lower proportions of intracellular water (ICW) to extracellular water (ECW). The reference population had more TCW and ICW/ECW. Conclusions: Our results suggest that young soccer players with higher PhA values, indicating better cell integrity and functionality, have better performance in typical anaerobic running activities, such as sprinting speed and RSA performance, adjusted to age and body composition characteristics.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3