Abstract
The introduction of surgical technology into existing operating rooms (ORs) can place novel demands on staff and infrastructure. Despite the substantial physical size of the devices in robotic-assisted surgery (RAS), the workspace implications are rarely considered. This study aimed to explore the impact of OR size on the environmental causes of surgical flow disruptions (FDs) occurring during RAS. Fifty-six RAS procedures were observed at two academic hospitals between July 2019 and January 2021 across general, urologic, and gynecologic surgical specialties. A multiple regression analysis demonstrated significant effects of room size in the pre-docking phase (t = 2.170, df = 54, β = 0.017, p = 0.035) where the rate of FDs increased as room size increased, and docking phase (t = −2.488, df = 54, β = −0.017, p = 0.016) where the rate of FDs increased as room size decreased. Significant effects of site (pre-docking phase: p = 0.000 and docking phase: p = 0.000) were also demonstrated. Findings from this study demonstrate hitherto unrecognized spatial challenges involved with introducing surgical robots into the operating domain. While new technology may provide benefits towards patient safety, it is important to consider the needs of the technology prior to integration.
Funder
Agency for Healthcare Research and Quality
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献