Comparison of Machine Learning Techniques for Mortality Prediction in a Prospective Cohort of Older Adults

Author:

Tedesco SalvatoreORCID,Andrulli Martina,Larsson Markus Åkerlund,Kelly Daniel,Alamäki Antti,Timmons Suzanne,Barton JohnORCID,Condell JoanORCID,O’Flynn BrendanORCID,Nordström AnnaORCID

Abstract

As global demographics change, ageing is a global phenomenon which is increasingly of interest in our modern and rapidly changing society. Thus, the application of proper prognostic indices in clinical decisions regarding mortality prediction has assumed a significant importance for personalized risk management (i.e., identifying patients who are at high or low risk of death) and to help ensure effective healthcare services to patients. Consequently, prognostic modelling expressed as all-cause mortality prediction is an important step for effective patient management. Machine learning has the potential to transform prognostic modelling. In this paper, results on the development of machine learning models for all-cause mortality prediction in a cohort of healthy older adults are reported. The models are based on features covering anthropometric variables, physical and lab examinations, questionnaires, and lifestyles, as well as wearable data collected in free-living settings, obtained for the “Healthy Ageing Initiative” study conducted on 2291 recruited participants. Several machine learning techniques including feature engineering, feature selection, data augmentation and resampling were investigated for this purpose. A detailed empirical comparison of the impact of the different techniques is presented and discussed. The achieved performances were also compared with a standard epidemiological model. This investigation showed that, for the dataset under consideration, the best results were achieved with Random UnderSampling in conjunction with Random Forest (either with or without probability calibration). However, while including probability calibration slightly reduced the average performance, it increased the model robustness, as indicated by the lower 95% confidence intervals. The analysis showed that machine learning models could provide comparable results to standard epidemiological models while being completely data-driven and disease-agnostic, thus demonstrating the opportunity for building machine learning models on health records data for research and clinical practice. However, further testing is required to significantly improve the model performance and its robustness.

Funder

INTERREG NPA

European Regional Development Fund

Science Foundation Ireland

Enterprise Ireland

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference76 articles.

1. Future Demand for Long-Term Care in the UK: A Summary of Projections of Long-Term Care Finance for Older People to 2051;Wittenberg,2004

2. Ageing Europe—Statistics on Population Developmentshttps://ec.europa.eu/eurostat/statistics-explained/index.php?title=Ageing_Europe_-_statistics_on_population_developments#Older_people_.E2.80.94_population_overview

3. Mortality prediction models in the general trauma population: A systematic review

4. Mortality prediction models in the adult critically ill: A scoping review

5. A review of modeling methods for predicting in-hospital mortality of patients in intensive care unit

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3