Abstract
In recent years, highway construction in the Qinghai-Tibet Plateau (QTP) has developed rapidly. When the highway passes through grassland, the soil, vegetation, and ecological environment along the line are disturbed. However, the impact on soil bacteria is still unclear. Soil bacteria play an important role in the ecological environment. The Qinghai-Tibet Highway (QTH) was selected as the research object to explore the changes in bacterial community structure, vegetation, soil, and other indicators. The results showed that the highway-related activities increased the degradation of vegetation along the road, significantly changed the physical and chemical properties of soil, and caused heavy metal pollution. These environmental factors affected the diversity and community structure of soil bacteria. This kind of disturbance shows a trend of gradually increasing from near to far from the highway. Gemmatimonas, Terrimonas, Nitrospira and Bacillus are more tolerant to environmental changes along the highway, while Barnesiella, and Blastococcus are more sensitive. The content of nitrate decreased and the content of ammonium nitrogen increased in the disturbed area, increasing the abundance of nitrifying bacteria. Therefore, the main factor of the disturbance of the QTH on the grassland is the decline of soil nutrient content, and the supplement of soil nutrients such as carbon and nitrogen should be taken into account in the process of ecological restoration of grassland along the line.
Funder
Science and Technology Project of Tibet Department of Transportation
National Natural Science Foundation of China
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Reference97 articles.
1. China: The third pole
2. 21 Century Climatic Change Impacts on the Hydrology of Major Rivers in the Tibetan Plateau;Su,2011
3. Recent land cover changes on the Tibetan Plateau: a review
4. Plant communities of central Tibetan pastures in the Alpine Steppe/Kobresia pygmaea ecotone
5. Assessment of ecological vulnerability on the Tibetan Plateau;Yu;Geogr. Res.,2011
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献